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Abstract  19 

The biophysical drivers that affect coffee quality vary within and among farms. Quantifying their 20 

relative importance is crucial for making informed decisions concerning farm management, 21 

marketability and profit for coffee farmers. The present study was designed to quantify the relative 22 

importance of biophysical variables affecting coffee bean quality within and among coffee farms 23 

and to evaluate a near infrared spectroscopy-based model to predict coffee quality. Twelve coffee 24 

plants growing under low, intermediate and dense shade were studied in twelve coffee farms across 25 

an elevational gradient (1470–2325 m asl) in Ethiopia. We found large within farm variability, 26 

demonstrating that conditions varying at the coffee plant-level are of large importance for physical 27 

attributes and cupping scores of green coffee beans. Overall, elevation appeared to be the key 28 

biophysical variable influencing all the measured coffee bean quality attributes at the farm level 29 

while canopy cover appeared to be the most important biophysical variable driving the above-30 

mentioned coffee bean quality attributes at the coffee plant level. The biophysical variables driving 31 

coffee quality (total preliminary and specialty quality) were the same as those driving variations 32 

in the near-infrared spectroscopy data, which supports future use of this technology to assess green 33 

bean coffee quality. Most importantly, our findings show that random forest is computationally 34 

fast and robust to noise, besides having comparable prediction accuracy. Hence, it is a useful 35 

machine learning tool for regression studies and has potential for modeling linear and nonlinear 36 
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multivariate calibrations. The study also confirmed that near-infrared spectroscopic-based 37 

predictions can be applied as a supplementary approach for coffee cup quality evaluations. 38 

 39 

Keywords: coffee quality, near-infrared spectroscopy (NIRS), random forest, PERMANOVA 40 

 41 

1. Introduction 42 

 43 

Coffee is one of the most important global commodities providing livelihood opportunities to 44 

millions of people in the global South (Legesse, 2020; Davis et al. 2019; Ovalle-Rivera et al. 45 

2015). In addition to being an important cash crop to farmers in Ethiopia, it generates about a 46 

quarter of the country's export earnings (Legesse, 2020). Quality is becoming paramount in the 47 

global coffee market. Coffee quality is about having desirable characteristics such as clean in its 48 

appearance and good cupping scores (Carvalho et al. 2020). High-quality coffee shows little or no 49 

physical defects, for instance, broken beans, insect damage, and other foreign materials such as 50 

seeds of shade trees black beans, immature beans, and floaters and, when roasted, have a distinctive 51 

character in the cup and high cup tasting scores. 52 

 53 

Green been coffee quality is a complex characteristic that depends on a series of pre-harvest factors 54 

that might vary either within or among farms. Some of the pre-harvest factors that vary within 55 

farms include microclimate, soil physicochemical properties, shade, age and variety of the coffee 56 

tree. Factors that vary among farms include growing elevation and macroclimate, agronomic 57 

practices and coffee variety (Getachew et al. 2022; Sarmiento-Soler et al. 2022). Variation in soil 58 

characteristics and fertilization can be situated at both levels. Harvesting and processing conditions 59 

can also be considered important factors influencing coffee quality. Elevation and shade cover 60 

play an important role through temperature, availability of light and water, especially during the 61 

seed ripening period (DaMatta et al. 2018, Sarmiento-Soler et al. 2022). Microclimate has a strong 62 

influence on flowering, bean expansion, and ripening (Borem et al. 2020, Hameed et al. 2020). 63 

Elevation is the major driving factor of climatic and edaphic factors at larger spatial scales. Shade 64 

tree canopy cover, on the other hand, modulates macroclimatic trends through its effect on 65 

microclimate. Cool climates (higher elevations, with at least intermediate canopy cover) had a high 66 

potential to produce coffee beans possessing superior total preliminary quality, higher caffeine, 67 
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total chlorogenic acid (CGA) contents, and trigonelline concentrations (Worku et al. 2018; Tolessa 68 

et al. 2017; paper in-press). Water deficits, on the other hand, during the coffee fruit expansion 69 

and filling period caused appreciable productivity loss and decreased bean quality (Kath et al. 70 

2020; Semedo et al. 2018). In terms of soil characteristics, is especially soil pH associated with 71 

the acidity of coffee, body and cup cleanness. More soil nitrogen increased the caffeine content, 72 

resulting in a more bitter taste of the brew (Yadessa et al. 2020; Clemente et al, 2015). Hence, 73 

assessing the importance and variations of these biophysical variables at a larger-scale across 74 

elevational gradients among coffee farms and the variations among coffee trees within the farms 75 

across a canopy cover gradient and their associated effect on coffee bean quality is very critical. 76 

Interestingly, assessing the relative importance of within farm variability and variability among 77 

farms has rarely been quantified in smallholder coffee farms. The existence of such inter-and intra-78 

farm variability could have a direct implication on input allocation, agronomic management 79 

decisions and the productivity of these systems (Trevisan et al. 2021; Monteiro et al.2020; Sida et 80 

al. 2020). Although several studies highlighted the effects of these variables on coffee bean quality, 81 

their relative importance has not yet been quantified, and documenting such differences may help 82 

to improve agronomic management decisions. 83 

 84 

Coffee quality assessment is a key step in price setting to determine its export potential in coffee-85 

producing countries. Thus, accurate quality assessment is of major importance to many coffee 86 

producers, roasters, and distributors. For each coffee bean shipment, further characterization is 87 

required to verify if it attains the required quality (Dos Santos et al. 2016). Coffee bean quality is 88 

mainly described by its physical attributes (mainly determined by bean length, diameter, and 89 

hundred bean mass), raw and cup quality attributes (Cheng et al. 2016; Dos Santos et al. 2016). 90 

The raw quality assessment evaluates defects that are manually separated and counted according 91 

as primary and secondary defects and odor. Primary defects include full black, full sour, fungus 92 

presence, foreign matter, insect damage, dried cherry, any mimic seed and soil presence whereas 93 

secondary defects include partial black, partial sour, floater, immature, etc. Cup or sensory quality, 94 

determine the desirability of a coffee for consumption (Tolessa et al. 2018; Teklu et al. 2011). 95 

These quality attributes, such as cup cleanness, acidity, body, and flavor can be distinguished by 96 

sensory organs and are assessed by professional cup tasters based on established procedures. In 97 
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Ethiopia, cupping score analysis enables experts to evaluate the preliminary cup assessment, which 98 

is used to group coffee into different specialty categories (Ribeiro et al. 2021; Levate Macedo et 99 

al. 2020; Okubo et al. 2019; Tolessa et al. 2016). Coffee beans graded from grade one to three are 100 

grouped into specialty coffee and these three categories are further classified into different 101 

specialty grades, which are called: Q1, Q2, and commercial type. In this particular study, our focus 102 

is mainly on total preliminary and specialty quality and bean physical attributes. 103 

 104 

Though standardized, methods of assessing coffee quality are prone to subjective judgments in 105 

addition to being costly and time-consuming. An alternative technique is use of Near-Infrared 106 

Spectroscopy (NIRS). NIRS technology-based sorting and grading systems for various aspects of 107 

food quality and safety are widely used. NIRS analysis is rapid, requires limited sample 108 

preparation, reduces costs of chemicals, and also multiple components can be determined on the 109 

same sample from a single measurement. NIRS analyses integrated to chemometrics have been 110 

proposed as an analytical methodology to characterize food (Al-Harrasi et al. 2020; Genisheva et 111 

al. 2018), medicine (Kucharska-Ambrożej et al. 2020; Calvo et al. 2018) and coffee samples 112 

(Souza et al. 2022; Ribeiro et al. 2021; Zhu et al. 2021). Their use has been considered to 113 

distinguish coffee origin (Adnan et al. 2020; Giraudo et al. 2019; Dos Santos et al. 2014), assess 114 

the quality of coffee beans (Tolessa et al. 2016; Esteban-Diez et al. 2004), caffeine content (Ayu 115 

et al. 2020; Budiastra et al. 2018; Zhang et al. 2017; Pizarro et al. 2007) and lipids (Caporaso et 116 

al. 2018) as well as to measure sugars content, roasting degrees and moisture (Levate Macedo et 117 

al. 2021). NIRS, specifically for coffee, has been successfully applied to coffee analysis, including 118 

determination of geographical origin (Giraudo et al. 2019), estimation of its chemical properties 119 

(Caporaso et al. 2018; Ayu et al. 2020), roasting process monitoring (Yergenson et al. 2020; 120 

Catelani et al. 2018; Bertone et al. 2016), adulteration detection (Chakravartula et al. 2022; De 121 

Carvalho Couto et al. 2021; Correia et al. 2018), and sensory analysis (Ribeiro et al. 2011).  122 

 123 

Nowadays, combination of multivariate calibration methods with spectroscopic data has allowed 124 

the analysis of complex spectra of multi-component system. A vast range of linear and non-linear 125 

computational methods is used for modeling these systems. Among them, random forest (RF) and 126 

partial least square regression (PLSR) are useful when non-linear or high-dimensional 127 
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relationships exist in the dataset. RFs are known as a flexible approach to capture non-linear 128 

relationships in high-dimensional data by learning a multitude of decision trees. Furthermore, they 129 

can be used to rank the predictors according to their importance to obtain accurate predictions. 130 

PLSR can cope with multidimensional data, and can eliminate multicollinearity problems by 131 

generating latent variables (components) from the covariance matrix of dependent and independent 132 

variables (Tyralis et al. 2019). 133 

 134 

Here we compile a database of 12 coffee trees selected across a gradient of open to dense canopy 135 

cover within each of 12 farms selected across an elevational gradient from 1470 m to 2325 m 136 

above sea level. This resulted in a total of 12 trees times 12 farms, that is, 144 coffee trees, 137 

specifically designed to quantify among and within farm variability, and assess the relative 138 

importance of the biophysical drivers of this variability. All farms were of the semi-plantation 139 

coffee production type. Our response variables were the cupping scores and physical bean 140 

attributes and NIRS spectra of the green coffee beans. We specifically addressed the following 141 

three important questions: 142 

 143 

i) How much green coffee bean quality variation is there among and within coffee farms?  144 

 145 

ii) What is the relative importance of biophysical drivers (type and degree of canopy 146 
cover, soil temperature and moisture) for green bean coffee quality? 147 

 148 

iii) Can NIR spectra of green coffee beans be used to predict cupping scores?  149 
 150 

 151 

2. Methodology 152 

In this section, we give an overview of the methods used in this study. In section 2.1 the data 153 

acquisition is described in detail. Section 2.2 treats the preprocessing techniques that are required 154 

to analyze the near infra-red spectroscopic (NIRS) data. The statistical machine learning methods 155 

used to analyze the data are discussed in section 2.3. 156 

 157 

2.1 Data acquisition 158 

We describe all aspects related to the data acquisition. Two main types of data were acquired: 159 

biophysical variables related to the selected coffee trees and NIRS data from their coffee beans. 160 
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 161 

Study area: The study was conducted in the Goma and Gera districts of Jimma Zone in 162 

southwestern Ethiopia (7°37’48’’– 7°56’37’’N latitude and 36°13’41’’– 36°39’17’’E longitudes) on 163 

12 coffee farms (Table 1 and Fig. 1). The region is characterized by a humid and warm subtropical 164 

climate with a yearly rainfall between 1500 and 2000 mm. The main rainy season is from May to 165 

September (monomodal rainfall) accounting for about 85% of the annual rainfall and coffee 166 

cultivation in the region is entirely rain-fed. Differences in temperature vary throughout the year 167 

with a mean monthly temperature between 13°C and 26°C. The bulk of coffee growing soils in the 168 

region are classified as Eutric Nitisols, which are deep, red, and well-drained soils with a clay 169 

content of more than 30% and a pH (measured in H2O) between 4.2 and 6.2 (Muleta et al. 2008, 170 

Dubale, 1996). 171 

 172 

Coffee farms selection and characterization: The study covered agroforestry sites distributed 173 

across the landscape, comprising an area of approximately 50 by 50 km. To encompass a natural 174 

temperature gradient, 12 coffee farms were selected across elevational gradients ranging between 175 

1470 m – 2325 m asl. All the selected coffee farms are categorized as a semi-plantation coffee 176 

production system, with high anthropogenic disturbances resulting in a relatively species poor 177 

canopy consisting of tree species such as Albizia schimperiana, Albizia gummifera and Croton 178 

macrostachyus. Mulching and organic fertilizers are a commonly used soil fertility management 179 

strategies. To avoid spatial autocorrelation, the selected farms were at least 3-4 km apart.  180 

 181 

Within each farm, sampling was conducted in 30 x 30 m area (sampling coffee plants consistently 182 

positioned inside the plantation to avoid edge effects) in which 12 individual coffee trees were 183 

selected. Shade tree canopy cover was measured for each selected coffee tree. Four coffee trees 184 

were sampled under each of the following canopy cover categories: light (<35% canopy cover), 185 

intermediate (35-65%) and dense shade levels (>65%). Accordingly, a total of 144 coffee trees 186 

were sampled from 12 coffee farms. All the measurements and data provided in this manuscript 187 

(shade tree canopy cover, soil moisture content, and soil temperature) are at the individual coffee 188 

tree-level with n = 144 whereas soil chemistry is at the coffee farm level. 189 

 190 
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Biophysical variables: The following biophysical variables were measured to describe elevation, 191 

shade tree canopy cover, soil temperatures and moisture, and soil properties per individual coffee 192 

trees. The variables are used to determine coffee quality (both cupping scores and NIR spectra). 193 

 194 

i) Elevation 195 

The elevation of each coffee farm was measured with a GPS (Garmin-60, Kansas, USA).  196 
 197 
 198 

ii) Shade tree canopy cover 199 
 200 

Shade tree canopy cover over each coffee tree was quantified using a convex spherical crown 201 

densiometer (Forest densiometers, Model A, Bartlesville, Oklahoma, USA). The densiometer is 202 

made of a small wooden box with a convex mirror consisting of a grid of squares; shade tree 203 

canopy cover is then calculated as the proportion of 96 points that was intersected by vegetation 204 

times 1.04. The densiometer was held at breast height and the observer’s head was reflected from 205 

the edge of the mirror just outside the box. The curved mirror reflects the canopy above. Above 206 

the canopy of each sampled tree using a ladder all the time, two counts were recorded and their 207 

mean was used. 208 

 209 

iii) Soil temperature, moisture and chemical characteristics 210 

a) Soil temperature: To quantify the temperatures in each coffee farm, soil temperatures were 211 

recorded at one-hour intervals for a 10 months period (February 2020 to November 2020, i.e., 212 

period from coffee flowering to harvest) using miniature temperature sensors (type HOBO 8K 213 

Pendant Temperature/Alarm Data Logger – UA-001–08, Onset Computer Corporation, 214 

Bourne, MA, USA) buried in the soil at 10 cm depth and 40 cm distance from the coffee tree 215 

trunk at all 144 coffee plants. We could not measure air temperatures due to theft of visible 216 

devices. To ensure the best representation of temperature experienced by the coffee plant, the 217 

daily minimum, mean and maximum soil temperature values were computed. From the daily 218 

data, monthly mean, minimum and maximum temperatures of the period February - November 219 

2020 were used for further analyses. 220 

 221 
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b) Soil moisture (gravimetric method): Surface mineral topsoil (0-10 cm) was sampled in the 222 

dry season at the start of the coffee flowering season in February 2020 to reflect the weather-223 

independent water status of the site (rough farm ranking, independent from rainfall) using a 224 

core sampler after removing the surface litter and plant debris at three locations per coffee tree 225 

(10 cm away from the stem in three directions). The samples were taken during the 226 

measurement of the canopy cover. These three samples were pooled into one sample for soil 227 

moisture content and nutrient analysis. The mass of the fresh soil samples was recorded using 228 

a balance immediately after sampling. The samples were oven-dried at 65°C for 48 hrs 229 

(Robertson et al. 1999), after which the dry mass was recorded immediately to determine 230 

gravimetric soil moisture content. Finally, the percent soil moisture was computed as (fresh 231 

soil mass – dry soil mass)/dry soil mass) x 100). 232 

 233 

c) Soil chemical characteristics: An oven-dried sub-sample was used for the measurements of 234 

pH, soil organic carbon, total N, Olsen-P, exchangeable Ca, Mg and K (Table 1). All the soil 235 

samples were dried to a constant weight at 65°C for 48 h, ground and sieved over a 2 mm 236 

mesh. The pH (in H2O) of the soil was measured using a calibrated glass electrode (model Ross 237 

sure-flow 8172 BNWP, Thermo Scientific Orion, USA). Soil organic C and total N, were 238 

measured using a CNS elemental analyser with a thermal conductivity detector in a (vario 239 

Macro Cube, Elementar, Uberlingen, Germany). Soil total Ca, K and Mg were measured by 240 

atomic absorption spectroscopy (Varian SpectrAA-220, USA) after complete destruction of 241 

the soil samples with HClO4 (65%), HNO3 (70%) and H2SO4 (98%) in Teflon bombs for 4 h 242 

at 150°C. Exchangeable K+, Ca2+, Mg2+, Na+ and Al3+ concentrations were measured by atomic 243 

absorption spectroscopy after extraction in 0.1 M BaCl2 (NEN 5738:1996). 244 

 245 

Coffee berry sampling and measurements: All fully ripe, red colored coffee berries were hand-246 

picked once at peak harvest between early October and early November 2020 from each individual 247 

coffee tree using local coffee bags. Berries were harvested first from lower elevation sites followed 248 

by the higher elevation sites. The berries were dry processed, i.e. sun-dried (on raised beds with a 249 

mesh wire) immediately after harvest (harvesting was in the morning and drying started in the 250 

afternoon). The berries were returned back to the bags before sunset and stored in clean rooms (to 251 
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prevent any spoilage), and returned back to the raised beds in the morning until the green beans 252 

attained 11.5% moisture content measured using a coffee moisture tester (mini GAC, Dickey - 253 

John, USA). The berries were regularly turned to maintain uniform drying. The dried coffee berries 254 

were dehusked using a coffee hulling machine (coffee huller, McKinnon, Scotland) at Jimma 255 

University, cleaned and stored at room temperature in separate labeled bags for analysis. 256 

 257 

For cup quality (60% of the total preliminary quality), green coffee bean samples were evaluated 258 

for cup quality attributes by a panel of three internationally trained, experienced and certified Q-259 

grade cuppers at the Ethiopian Commodity Exchange (ECX) center based in Jimma town. Acidity, 260 

body, cup cleanness and flavor were assessed in accordance with the standard method (ECX, 261 

2011). This Q-grade standard method involves Q-certified cuppers, i.e., cuppers licensed by 262 

Specialty Coffee Association (SCA) Coffee Quality Institute (CQI). The cuppers were trained in 263 

descriptive sensory analyses in using a sensory lexicon of cup quality (Di Donfrancesco et al. 264 

2014). Accordingly, aroma, flavor, acidity, body, uniformity, cup cleanness, overall preference, 265 

aftertaste, balance and sweetness were each rated on a scale from 0 to 10. This total preliminary 266 

assessment was used to classify the coffee samples into different quality grades. According to ECX 267 

(2011), dry-processed coffee samples were categorized into different quality grades based on total 268 

preliminary assessment and classified as: 91-100 (grade 1), 81-90 (grade 2) and 71-80 (grade 3) 269 

whereas the specialty coffee achieving scores between 85-100 are classified as specialty 1 (Q1) 270 

and 80-84 is specialty 2 (Q2), and Q3 (commercial type) (https://sca.coffee/research/protocols-best-271 

practices). 272 

 273 

Roasting, grinding and brew preparation was standardized. A roaster equipped with a cooling 274 

system, in which air was forced through a perforated plate, capable of roasting up to 500 g of 275 

coffee beans, was used for roasting the coffee beans. An amount of 100 g green beans was used 276 

for each sample and the beans were put into the roasting machine with six cylinders (Probat, 4 277 

Barrel Roaster, Germany) and were carefully roasted for 7-8 minutes to medium roast at 278 

temperatures of 200°C. The roasted bean samples were ground to a medium level using a 279 

Guatemala SB electrical grinder that was cleaned well after each sample. The medium roasted 280 

coffee was tipped out into a cooling tray and allowed to cool down for 4 minutes rapidly by 281 
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blowing cold air through it. Then, eight gram of coffee powder was put into a 250 mL cup and 5 282 

cups per sample were used. Next, 125 ml boiled water (93°C) was poured onto the ground coffee, 283 

followed by stirring the content to ensure the homogeneity of the mixture. Then, the cups were 284 

filled with an additional 125 mL and left to settle. After three minutes, the floaters were skimmed, 285 

and the brew was ready for cup tasting. Finally, the five prepared cups were tasted by three 286 

professional Q-grade cuppers operating in ECX. Each panelist gave their independent judgment 287 

using a cupping form and the average score of the three cuppers was used for analysis. Total 288 

preliminary quality is the sum total of raw bean quality (primary defects, secondary defects, and 289 

odor) and cup quality attributes (acidity, body, flavor, and cup cleanness), whereas specialty 290 

quality is the sum total of ten cup quality attributes (aroma, flavor, aftertaste, acidity, body, 291 

balance, overall, cup cleanness, sweetness, and uniformity). 292 

 293 

Scanning of coffee bean samples with NIR spectroscopy and spectral data acquisition 294 

Approximately 50 g of each dried and grounded green coffee bean sample was placed into a glass 295 

Petri dish (diameter = 2 cm, depth = 1 cm). Samples in the Petri dish were pressed gently and 296 

levelled by a spatula, which was necessary as the bean powder surface ensures maximum diffuse 297 

reflection and high signal-to-noise ratio. A Fourier Transform-NIR spectrometer (Tango, Brucker, 298 

Belgium) was used to obtain coffee bean spectra. Green coffee samples were ground to a size 299 

smaller than 5 mm and 15-20 g of each sample was used for analysis. The samples were irradiated 300 

with tungsten (5V/7W) as source of near infrared light and the spectra measurements were 301 

performed at room temperature. The coffee bean samples were scanned in diffuse reflectance mode 302 

using a Compact NIR spectrophotometer (Tec5 Technology for spectroscopy, Germany) and the 303 

reflectance was detected by an Indium Gallium Arsenide (InGaAs) diode. This generated NIR 304 

spectra data consist of two lists of numbers (wavenumber and its associated reflectance). Each 305 

spectrum had 1898 data points in the wavenumber range of 3952 to 11540 cm-1 (867 to 2530 nm) 306 

with data spacing of 4 cm-1 for a total of 144 bulk coffee bean samples (Appendix Fig. S1).  307 

 308 

2.2 NIRS data preprocessing and analysis 309 

Preprocessing of NIR spectra is an essential component of multivariate data calibration. Its primary 310 

goal is to remove unwanted information such as spectra noise, and scattering effect that are not 311 
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related to the variables (properties) of interest. Furthermore, we also apply outlier detection, 312 

spectra trimming and optimal wavelength selection through a PCA analysis.  313 

 314 

Spectra preprocessing: A variety of mathematical spectra pre-processing were tested in order to 315 

improve model robustness and prediction accuracy. Several pre-processing methods such as 316 

spectra normalization, de-trending (DT), standard normal variate (SNV), vector normalization, 317 

spectra derivatives, multiplicative scatter correction (MSC), orthogonal signal correction (OSC) 318 

and combinations of them have been investigated in several studies. Generally, with a well-tested 319 

pre-processing steps, the performance of the model can be greatly improved. These mathematical 320 

pre-processed methods strongly depend on a given dataset, and no universal solution could be 321 

found. However, certain preprocessing techniques were selected following the best results of (Jiao 322 

et al. 2020; Dotto et al. 2018; Nawar et al. 2017; Knox et al. 2015; Peng et al. 2014; Cambule et 323 

al. 2012; Knox et al. 2012). 324 

 325 

Among the extensively reviewed prepressing techniques, Savitzky-Golay smoothing, 326 

multiplicative scatter correction, and standard normal variate were found to be a better 327 

preprocessing algorithms for preprocessing of our raw spectra, and all three of them were 328 

examined in two models. Besides, these mathematical pre-processed algorithms were widely used 329 

in reflectance spectroscopy methods in many literatures (Bian et al. 2021; Ren et al. 2021; Jiao et 330 

al. 2020; Nawar et al. 2017). The details of these preprocessing algorithms are put in the appendix 331 

word file 1. 332 

 333 

Outlier detection in pre-processed NIR spectra: This was performed using the 25th and 75th 334 

percentile by checking outliers in NIR spectra using the quantile() function from the package 335 

“ggstatsplot”. The suspected outliers were detected using the interquartile range (IQR). Finally, 336 

the subset() function from the same package was used to eliminate outliers. Accordingly, five rows 337 

from the dataset were detected as outliers and subsequently omitted (Bello et al. 2020). 338 

 339 

Spectra trimming: this is a procedure where wavelength ranges with high signal-to-noise ratio 340 

are removed. This is to specify the wavelength regions of interest without any standard procedures 341 
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(Wadoux et al. 2021; Ng et al. 2018). This is because, the spectra measurements below 720 nm 342 

and above 2500 nm do not contain much useful information since they are at the boundary of the 343 

range recorded by the sensor. Hence, NIR spectra within a range of 720–2500 nm was retained for 344 

further spectra processing, which has brought the number of data points per spectrum to p = 1884. 345 

 346 

Optimal wavelength selection: As the complete spectra contains redundant information as 347 

indicated in Appendix Fig S1, this would result in complex, unstable, and inaccurate models. 348 

Hence, optimal wavelength selection is generally used to identify those wavelengths that capture 349 

a large part of the information present in the spectra (Mishra et al. 2021; Rodriguez-Pulido et al. 350 

2013). We performed a PCA analysis showing that the first component explained 97.8% of the 351 

variability present in the whole spectra. The wavelengths corresponding to the peaks from the 352 

loading plot of the first component were selected as the optimal wavelengths (Appendix Fig S3) 353 

(Mishra et al. 2021; Rodriguez-Pulido et al. 2013). In this way, 87 wavelengths were selected and 354 

used to infer the final model. An excel containing all the selected wavelengths using the PCA 355 

loading method can be found in the Appendix table 1.  356 

 357 

2.3. Statistical data analysis 358 

We introduce the statistical machine learning methods that are used for data analysis.  359 

 360 

Variable importance: For data visualization and to detect multicollinearity among the biophysical 361 

variables, PCA was employed. The PCA provides a set of explanatory orthogonal vectors by 362 

projecting similar variables in the two-dimensional space and subsequently variables closer to each 363 

other indicates the high correlation. Accordingly, Tmin (minimum temp) was omitted from the 364 

analysis and the remaining predictor variables were considered for variable selection procedures 365 

(Janitza et al. 2018; Wright et al. 2017). Likewise, as elevation is the natural driving factor for 366 

other biophysical variables, it was also omitted from the analysis. Based on this, permutation-367 

based variable importance was used to estimate the influence of a given variable in a model 368 

prediction and ultimately estimate its relative importance for the coffee quality and hundred bean 369 

mass. This technique assigns a score to input variables based on how useful they are at predicting 370 

a target variable (Probst, 2018; Wright et al. 2017). Here only random forest was used for 371 
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classification and ranking candidate biophysical variables based on the variable importance using 372 

varImp package (Probst, 2019). A higher score means that the specific variable will have a larger 373 

effect on the model that is being used to predict a certain variable. By looking at the variable 374 

importance, we can easily decide which variables to possibly drop because they do not contribute 375 

much to the prediction process. The method for calculating permutation accuracy importance was 376 

applied in R using the ranger package (Janitza et al. 2018; Wright et al. 2017). 377 

 378 

Permutational Multivariate Analysis of Variance (PERMANOVA): The proportion of 379 

variance explained by the individual coffee trees and coffee farms was performed using geometric 380 

partitioning of variance in a multivariate data analysis technique to examine whether the variability 381 

observed in physical coffee bean quality and cupping scores is between the individual coffee trees 382 

or coffee farms and to quantify the proportion of variance explained by each of them. To this end, 383 

a variance partitioning approach was adopted in the multivariate domain (Behrens et al. 2018; 384 

Anderson, 2005). This relied on a PERMANOVA model, featuring the Manhattan distance matrix 385 

among observations (i.e. cupping scores) as the dependent matrix and coffee trees and farms as a 386 

fixed and random variable, respectively. PERMANOVA was chosen because it generates a 387 

geometric partitioning and extends the analysis much broader, allowing rigorous meaningful 388 

analysis of high-dimensional systems having variables with extremely non-normal or over 389 

dispersed behavior. It is not restricted by distributional assumptions and can accommodate 390 

heterogeneity within-group dispersions than the classical ANOVA. The model was based on 1x105 391 

permutations and the breakdown of the variance among coffee trees and farms was carried out by 392 

evaluating the marginal effect of each of them in the full model. In doing so, the share of the coffee 393 

farms and coffee trees was examined through linear mixed effect models for the total preliminary 394 

and specialty quality, and hundred bean mass. The estimation of the variance function, its partition 395 

among the two, and how each of them affects cupping scores and hundred bean mass was then 396 

performed according to the approach of Hoffman (2021). The permutational multivariate analysis 397 

of variance was carried out using “variancePartition” and “vegan” package. 398 

 399 

Random forest and partial least square regression to predict coffee quality based on NIR 400 

spectra data: A two-dimensional data matrix consisting of pre-processed spectra (as independent 401 
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variables) and measured cupping scores (total preliminary and specialty quality) as dependent 402 

variable was created from the 139 coffee bean samples (as 5 of the rows were outliers and 403 

subsequently removed). For the purpose of coffee quality prediction random forests (RF) and 404 

partial least square regression (PLSR) were tested.  405 

 406 

Both PLSR and RF models were chosen because they are more powerful than the conventional 407 

regression models for modeling complex and non-linear data in a high-dimensional and 408 

hierarchical fashion. PLSR can cope with multidimensional data, and can eliminate 409 

multicollinearity problems by generating latent variables (components) from the covariance matrix 410 

of dependent and independent variables. Hence, PLSR is recommended as one of the best 411 

performing calibration techniques for spectral data (Kuang et al. 2015). RF, on the other hand, 412 

uses an ensemble of a large number of decision trees by offering sufficient accuracy, simple 413 

implementation, and high robustness (Tyralis et al. 2019). The algorithm is a model ensemble 414 

method constructed based on combining several decisions by the regression and classification 415 

trees. Two key parameters need to be taken into account: one is the number of the decision trees 416 

and the other is the number of sampled variables for building a decision tree. RF has the capability 417 

of ranking the importance of variables by their importance (Janitza et al. 2018). The method could 418 

be briefly summarized in three steps: (1) the Bagging method to generate T subsets of training data 419 

randomly; (2) each training sample is employed to generate the corresponding decision trees 420 

randomly choosing m attributes from M attributes as the split attributes set of the current node 421 

prior to select attributes on each non-leaf node, and split the node in the best split way among the 422 

M attributes; (3) each tree grows sufficiently without pruning, and was used to test the 423 

corresponding category from the test set. Finally, the majority vote of the decision trees was used 424 

to make an ensemble classification decision (He et al. 2022; Khan et al. 2022; Asadi et al. 2021; 425 

Ao et al. 2019). 426 

 427 

Model validation and evaluation: To validate the RF and PLSR for coffee quality prediction, a 428 

leave-one-out cross-validation (LOOCV) procedure was performed. In each run, one sample was 429 

left out to test the models while the other samples are used to train and calibrate the models. 430 

Training and calibration involved a randomly split into calibration (n=112) and prediction (n=27) 431 
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samples. For the PLSR the number of latent variables were optimized during this calibration step. 432 

For the RF, we optimized the number of sampled variables (over a range of 2 to 87) and the 433 

minimum size of terminal nodes (over the values 1,5 or 10) while the number of trees was held 434 

fixed at 500 (Tridawati et al. 2020; Wadoux et al. 2019; Freeman et al. 2016). The process of 435 

LOOCV was repeated until every sample is left out once. The implementation was performed with 436 

the R environment for statistical computing using the packages ‘caret’ and ‘randomForest’ (Kuhn 437 

and Johnson, 2013). 438 

 439 

In both RF and PLSR models, four statistical metrics: correlation coefficient (r), coefficient of 440 

determination (R2), root mean square error (RMSE), and residual predictive deviation (RPD) were 441 

used to evaluate the predictive performance of the models according to the classification criteria 442 

of Viscarra et al. (2009). The coefficient of determination (R2) reflects the percentage of variance 443 

in the response variable that is accounted for by the explanatory variables. An R2 value between 444 

0.5-0.65 indicates that more than half of the variance in the response variable is accounted for by 445 

the explanatory variable. R2 value in the range of 0.66-0.81 indicates approximate quantitative 446 

predictions whereas the R2 value in the range of 0.82-0.9 reveals a good prediction. Calibration 447 

models possessing an R2 value above 0.91 are considered excellent (Nakagawa et al. 2017). RMSE 448 

allows to measure how far the predicted values deviate from the observed values in a regression 449 

analysis. The larger the difference, the larger the gap between the predicted and observed values. 450 

The smallest RMSE value is usually related to the optimal calibration model and the better a model 451 

is able to fit the data. RPD takes both the prediction error and the variation of observed values into 452 

account, hence providing a metric of model validity that is more objective than RMSE and more 453 

easily comparable across model validation studies. The greater the RPD, the better the model's 454 

predictive capability (Nakagawa et al. 2017; Kapper et al. 2012). 455 

 456 

RPD is defined as the standard deviation of the measured value divided by the RMSE of the 457 

predicted values (Kapper et al. 2012; Guy et al. 2011). It is calculated as follows:  458 

𝑅𝑃𝐷 =
𝑆𝐷

RMSE
 459 

where SD is the standard deviation of the measured value and RMSE is the standard error of 460 

prediction. In general, when RPD>2, it indicates that the model works well and can be used for 461 
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quantitative analysis and evaluation (Kapper et al. 2012). Models estimations were computed 462 

using PLSR and RF along with four statistical metrics: correlation coefficient (r), coefficient of 463 

determination (R2), root mean square error (RMSE), and residual predictive deviation (RPD) 464 

according to the classification criteria of Viscarra et al. (2009). Generally, a good model prediction 465 

corresponds to high R2, r, and RPD, and low RMSE values. Finally, scatter plots showing the 466 

relationship between the spectra data and cupping scores were generated using the best model. For 467 

all statistical procedures, R-4.1.2 software (R Core Team, 2022) was used. 468 

 469 

3. Results 470 

Descriptive statistical results of soil chemistry, moisture and temperature in the twelve coffee 471 

farms are shown in Table 1. The coefficients of variation (CV) of soil chemistry, moisture and 472 

temperature showed that among all the measured soil chemical variables, Olsen-P had the highest 473 

CV (63.7%), particularly in the coffee farm with elevation 2325 m asl followed by soil 474 

exchangeable K (62.7%) at coffee farms situated at 2027 m asl elevation. Likewise, Olsen-P had 475 

the next highest CV (60.0%) at the coffee farm situated at the elevation of 1774 m asl, as compared 476 

to other measured soil parameters. In contrast, soil C at the coffee farm situated at the elevation of 477 

1650 m asl had the lowest CV (0.1%), showing that this soil chemical variable is more homogenous 478 

than other soil chemical variables in the study sites. CV values of soil moisture content showed 479 

inconsistent values across elevational gradients. 480 

 481 

3.1. The relationship between elevation and canopy cover on coffee quality attributes 482 

Elevation significantly (p<0.05) affected all the three coffee bean quality attributes (total 483 

preliminary quality, specialty quality, and hundred bean mass). An interaction effect of elevation 484 

and canopy cover significantly influenced total preliminary quality and hundred bean mass but not 485 

the specialty quality (Fig. 2 and Appendix table S1). A clear relationship of hundred bean mass 486 

with elevation and shade canopy cover was observed, confirming that a greater hundred bean mass 487 

was produced in response to increasing elevations, at intermediate and dense shade levels (Fig. 2 488 

and Appendix table S1). Under conditions of light shade levels (10-35%) and intermediate shade 489 

levels (35-65%), hundred bean mass increased with elevation (Fig. 2 and Appendix table S1). 490 

However, a decreasing trend in hundred bean mass was observed under dense shade (>65% shade 491 
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level) when elevation keep increasing. Dense shaded conditions and the low temperatures at higher 492 

elevations may not improve the growth potential and quality of the beans, however, dense shaded 493 

environments at warmer environments of the low elevations show an increased trend in bean mass. 494 

Our study confirmed that higher elevations with cooler climates (>1900 m) with intermediate 495 

shade cover (35-65%) showed a higher potential to produce green coffee beans having superior 496 

total preliminary quality (Fig. 2 and Appendix table S1). The results further support that coffee 497 

cup quality attributes are more sensitive to temperature changes than to other farm management 498 

practices, possibly due to the fact that cup quality attributes such as flavor, taste, aroma and body 499 

are temperature-dependent. Coffee beans from higher elevations had a greater specialty quality as 500 

compared to coffee beans grow in warmer climates (Fig. 2 and Appendix table S1). Shade cover 501 

affected the total preliminary quality and it had no effect on specialty quality. This confirms that 502 

shade drives the physical bean quality (raw value) much more than the sensory attributes. In other 503 

words, poor management of shade at a given elevation will have a negative impact on the potential 504 

to produce qualitative coffee. 505 

 506 

3.2. Quantifying the proportion of variance explained by coffee trees and coffee farms  507 

 508 

The permutational multivariate analysis of variance (PERMANOVA) depicted significant 509 

differences in coffee quality among coffee farms and between the individual coffee trees (model 510 

residuals). In terms of the breakdown of the total variance in total preliminary quality, a linear 511 

mixed model depicted a substantial contribution of individual coffee trees (73%) while only 17% 512 

was explained by the coffee farm (Fig. 3a). In the specialty quality, the model depicted large 513 

contribution of the individual coffee trees (96%), and only 4% by the coffee farms (Fig. 3a). 514 

Similarly, for hundred bean mass, the model depicted a substantial contribution of individual 515 

coffee tree (76.6%) and coffee farms (23.4%) (Fig. 3a).  516 

 517 

Meanwhile, the biophysical variables contributed differently for the coffee quality attributes. 518 

Canopy cover contributed 9.6%, 4.2% and 22.4% for total preliminary quality, specialty quality 519 

and hundred bean mass, respectively. Soil moisture contributed 0.1%, 0.2% and 2.7% for total 520 

preliminary quality, specialty quality and hundred bean mass, respectively. Tmax (max 521 

temperature) contributed 2.1%, 2.3% and 0.2% for total preliminary quality, specialty quality and 522 
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hundred bean mass, respectively. Tmean (mean temperature) contributed 0.1% each for total 523 

preliminary quality, specialty quality and hundred bean mass, respectively (Fig. 3b).  524 

 

3.3. Establishing a relationship between NIRS and cup quality 525 

 526 

The outcomes of the examined models in the estimation of coffee quality and their performance 527 

assessment using different statistical metrics are presented in Table 2. Both RF and PLSR models 528 

were tested, optimized and compared to each other. A good model prediction corresponds to high 529 

R2, r, and RPD, and low RMSE values. As can be seen from table 2, the performance of the models 530 

without the spectra preprocessing was low, and spectral data preprocessing could significantly 531 

improve the performance of the two models. Therefore, preprocessing of the raw spectral data is 532 

an important first stage before any regression model is established as it improves the prediction. 533 

In addition, compared with the single preprocessing method, the combination of different 534 

preprocessing methods can greatly improve the performance of the model. Accordingly, the results 535 

suggest that the RF model has a better predictive power as compared to PLSR for both training 536 

and testing datasets at a specified preprocessing algorithms for both total preliminary and specialty 537 

quality as indicated in (Table 2 and Fig. 4). Moreover, RF model showed a higher R2 and lower 538 

RMSE values as compared to PLSR in the estimation of total preliminary and specialty quality, 539 

which demonstrated that it has satisfactory estimative capability in coffee quality assessment. RPD 540 

in total preliminary and specialty quality was also found to be superior in RF model (Table 2). 541 

 542 

3.4. Quantifying the relative importance of biophysical variables on measured and predicted 543 

coffee quality 544 

 545 

By applying random forest models, the main important biophysical variables influencing coffee 546 

quality were identified. The measured relative importance of the investigated variables derived 547 

from the RF model as shown in Fig. 5 differed among the different coffee cupping scores. As 548 

presented in the figure, the order of importance of the variables to total preliminary and specialty 549 

quality and NIRS is: canopycover>soilmoisture>Tmean>Tmax, in which the first three explained 550 

31.8 - 40%, 27.4 – 33.3% and 19.2%, respectively, of the variation in the data. On the other hand, 551 

the order of importance of the variables to hundred bean mass is: 552 
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canopycover>Tmean>soilmoisture>Tmax, in which the first three explained 32.4%, 29.3% and 553 

22.2%, respectively, of the variation in the data (Fig. 5). Similarly, the order of importance of the 554 

variables to NIRS is as follows: canopycover>soilmoisture>Tmean>Tmax, in which the first three 555 

of them contributed 37.7%, 28.2% and 22.4%, respectively for the variations. Hence, the 556 

biophysical variables affecting coffee cupping (total preliminary and specialty quality) appeared 557 

to be the same for the NIR spectra. 558 

 559 

4. Discussion 560 

 561 

4.1. Intra-farm variability is larger than the inter-farm variability 562 
 563 

Our findings indicate that elevation is the key biophysical variable influencing all the measured 564 

coffee bean quality attributes (hundred bean mass, total preliminary and specialty quality) at the 565 

farm level (Fig 2 and Appendix table 1) while canopy cover was the most important biophysical 566 

variable driving the coffee bean quality attributes and NIRS at the plant level (Fig 3). 567 

 568 

Most importantly, the results show the existence of high variability between coffee plants within 569 

a farm, as evidenced from the variance partitioning procedures in permutational multivariate 570 

analysis of variance in a linear mixed model. The magnitude of variability observed within a coffee 571 

farm is far larger than the variability among coffee farms in terms of the measured coffee bean 572 

quality attributes. The order of importance of the variables to total preliminary and specialty 573 

quality was found to be in order of canopycover>soilmoisture>Tmean>Tmax. This means that 574 

conditions varying at the coffee plant-level might be of greater importance for influencing hundred 575 

bean mass and cupping scores when considering the farm-level as a whole. The potential 576 

explanations for this huge intra-farm variability could be due to various reasons: variation in 577 

genetic structure of the coffee plants (there is definitely an inherent variation in growth rate among 578 

coffee plants due to the variation in resource use (for instance, nutrient capture, transport and 579 

utilization efficiency, water use efficiency, light use efficiency), individual leaf trait variability 580 

like SLA due to the variation in genetic structure of the coffee plants, disease sensitivity of the 581 

individual coffee plants); the way how the coffee plants were obtained (if not all, most coffee 582 

plants of the smallholders are reared from seeds by natural means, and this could be a potential 583 
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explanation for the huge intra-farm variability). Variation will become high in the case of sexually 584 

reproduced plants especially if it is reared by natural selection); poor and inconsistent farm 585 

management practices within a farm (for instance, no definite spacing between plants and rows in 586 

smallholder coffee farms unlike that of the plantations); age of the coffee plants (although an effort 587 

was made to consider coffee trees aged between 6 and 10 years old, we still believe that age 588 

matters). 589 

 590 

Although significant variability has been documented in many African smallholder production 591 

systems, agronomic research for development generally ignores such variability in the decision-592 

making process and programs (Oyinbo et al. 2019; MacCarthy et al. 2018). Incorporating this 593 

variability in agronomic decision-making to minimize its effect requires systematic quantification 594 

of the variability. However, quantifying intra-farm variability has been a challenge so far and 595 

operationalizing this variability in agronomic decision-making is even more challenging (Sida et 596 

al. 2021; Trevisan et al. 2021; Van Loon et al. 2019). 597 

 598 

Most of the observed variation (more than 75%) is due to unmeasured variation or residuals. This 599 

implies that a large proportion of the variation in coffee cupping scores is to be explained by other 600 

plant-level factors such as the specific nutrient levels, coffee tree pruning, fruit thinning, rate, 601 

method and timing of fertilizer application, age of the coffee trees, shade tree species, cultivar 602 

characteristics, and disease sensitivity of the individual coffee trees. Besides, the variance 603 

partitioning procedures have shown that the total preliminary and specialty quality, and hundred 604 

bean mass, were driven by the shade tree canopy cover (30-46% variability), which reflects that 605 

canopy cover at the coffee plant-level is more important for explaining variation for green bean 606 

quality. Hence, based up on the local conditions and the requirements, smallholder coffee farmers 607 

can manage their shade tree canopy cover to optimize their coffee quality. 608 

 609 

In addition, Olsen-P had the highest CV (63.7%), particularly in the coffee farm with elevation 610 

2325 m asl followed by soil exchangeable K (62.7%) at coffee farms situated at 2027 m asl 611 

elevation. It is interesting to notice that, unexpectedly, soil available P content (in this case, Olsen-612 

P) was higher at higher elevations compared to the lower and mid-elevations. The most likely 613 
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reason for this could be differences in local environmental conditions mainly soil characteristics 614 

such as weathering and/or litter quality. We still believe that more samples would have improved 615 

the accuracy of the fluctuation in P concentrations. Consequently, more data would be necessary 616 

to test this hypothesis. 617 

 618 
4.2. Importance of the biophysical variables for coffee cupping scores and NIRS 619 

 620 
The results of the random forest model indicated that canopy cover, soil moisture and mean soil 621 

temperature were identified as the key variables affecting total preliminary and specialty quality, 622 

and hundred bean mass at a coffee-tree level. Large number of studies have shown that shade 623 

percentage, soil moisture and temperature affect coffee cupping scores. At the local scale, canopy 624 

cover is the main determinant of microclimate temperature and radiation. Shade canopy cover 625 

provides a means to keep coffee plants closer to their ideal temperature ranges (18°C-21°C) and 626 

prevent damage from extreme minimum and maximum temperatures and drought (Nesper et al. 627 

2017, Somporn et al. 2012). Numerous studies have shown that there was a significant positive 628 

correlation between coffee quality and shade tree canopy cover as well as soil moisture and 629 

significant negative correlation between coffee quality and temperature (Bosselmann et al. 2009; 630 

Avelino et al. 2007; Leonel and Philippe, 2007). A decline in soil temperature were recorded with 631 

elevation, implying that the spatial distribution of soil temperatures is controlled mainly by 632 

elevation (Navarro-Serrano et al. 2020). Although soil temperatures can be affected by the 633 

interaction of multiple local factors such as shade canopy cover, mulching and irrigation, elevation 634 

was found to be the main driving variable for the changes in soil temperatures (Getachew et al. 635 

2022; paper in-press; Onwuka and Mang, 2018; Barman et al. 2017). 636 

 637 

Likewise, DaMatta et al. (2018) reported that coffee plants tolerated higher temperatures when 638 

ample water was supplied. A study from Southwest Ethiopia demonstrated that coffee trees grown 639 

under open shade conditions produced beans of lower acidity, body and flavor as compared to the 640 

coffee plants grown under dense shade (Bote, 2016). On the other hand, higher bean size and mass 641 

were obtained when shade canopy cover increased. Shade promotes slower and more balanced 642 

fruit maturation by the mother plant, thus yielding a better-quality product than unshaded coffee 643 

plants (Barbosa et al. 2012; Geromel et al. 2008; Leonel and Philippe, 2007). These previous 644 
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findings further support that coffee cup qualities are more sensitive to temperature changes, 645 

possibly due to the fact that formation of biochemical precursor molecules responsible for cup 646 

quality attributes such as flavor, taste, aroma and body are temperature dependent. Meanwhile, 647 

Bertrand et al. 2012 demonstrated that mean soil temperature during coffee bean development 648 

influenced acidity, fruity character and flavor. Silva et al. (2005) reported that temperature was 649 

likely the most important factor to bring variations in coffee cup quality from the southwest region 650 

of Ethiopia. Our results thus corroborate that the physical attributes and cupping scores are more 651 

temperature driven. Altitude and shade cover management is therefore important to enhance the 652 

potential to bring good coffee beans to the market. 653 

 654 
4.3. Comparison of the two models for the quantitative prediction of coffee cupping scores 655 
 656 

Based on two of the tested models (RF and PLSR), the effects of different preprocessing methods 657 

were examined. The pre-processing of spectral data can remove the influence of irrelevant 658 

information on our spectra and ultimately improved the robustness and accuracy of the models. As 659 

can be seen from table 2, RF and PLSR models produced different outputs when different 660 

preprocessing methods were used separately or in combination. When the spectra were completely 661 

not preprocessed, R2 was only 0.56 and 0.52, and RMSE was 0.87 and 1.92 in PLSR and RF, 662 

respectively in specialty quality. After application of Savitzky-Golay smoothing, multiplicative 663 

scatter correction, and standard normal variate, the R2 was raised to 0.87, while RMSE was reduced 664 

to 0.26 when RF was used. Therefore, the performance of the RF model without preprocessing 665 

was obviously low, and spectral data preprocessing could significantly improve the performance 666 

of the model. In addition, compared with the single preprocessing method, the combination of 667 

different preprocessing methods was of great help to the performance. 668 

 669 
Referring to Table 2 again, the RMSE of the RF for total preliminary quality was 0.55, which 670 

represented the lowest error of prediction when Savitzky-Golay smoothing, multiplicative scatter 671 

correction and standard normal variate preprocessing methods were applied. The R2 is 0.83, 672 

indicating that the RF model can predict the data reasonably better (Barea-Sepulveda et al. 2022, 673 

Anderson et al. 2020; Zhang et al. 2020; Ghasemi and Tavakoli, 2013). Most importantly, the 674 

RPD of random forest was 3.87, whereas the RPD of PLSR was 1.41 for the total preliminary 675 

quality when the same preprocessing methods were utilized. The RF thus performed well (Barea-676 
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Sepulveda et al. 2022, Anderson et al. 2020). Given these findings, a simultaneous application of 677 

spectral preprocessing methods (Savitzky-Golay smoothing, multiplicative scatter correction and 678 

standard normal variate) in conjunction with the RF model better predicted the coffee cup quality. 679 

 680 
Several studies have reported that the performance of different tree-based models including RF 681 

can vary from study to study, thus there is no general best modelling technique for predicting 682 

coffee quality (NS Akbar et al. 2020; Martinez-Santos et al. 2021). Moreover, it has been 683 

suggested that the predictive power of the modelled output is also the result of the research design, 684 

preprocessing methods and input variables (Vargas and Hanandeh, 2021; Naccarato et al. 2016; 685 

Aertsen et al. 2010). Overall, near-infrared spectroscopic based predictions of green bean quality 686 

can be utilized to complement cupping evaluations conducted by humans, and most importantly, 687 

to increase the throughput of the cupping evaluations.  688 

 689 

Limitations and way forward 690 

Our results show the existence of high variability among coffee plants within farms, which can be 691 

as high as 73%. Although we have quantified the magnitude and distribution of the inter-and intra-692 

farm variability in smallholder coffee farms, a couple of questions remain unaddressed in our 693 

study. We were limited to disentangle the drivers of some relationships in this work because of 694 

data limitations such as coffee cultivar characteristics (as there is definitely an inherent variation 695 

in growth rate among coffee plants due to the variation in resource use), disease sensitivity of the 696 

individual coffee trees, limited soil moisture data, plant nutrient levels, etc. Most importantly, our 697 

study is also a relatively a short-term study and this again calls for caution for generalizing our 698 

results and long-term investigations are necessary.  699 

 

Conclusion 700 

The main contribution of this work is the assessment of the spatial variability of coffee quality in 701 

response to different biophysical drivers. Our study showed the existence of large within farm 702 

variability, indicating that conditions varying at the coffee plant-level are of importance for 703 

improving the physical attributes and cupping scores of green coffee beans, and hence 704 

documenting such differences may help to improve agronomic decision-making processes. 705 

However, quantifying the factors responsible for the large within farm variability is much more 706 
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challenging than identifying and measuring among-farm variability. Understanding, quantifying, 707 

and managing within farm variability is crucial to improve to improve nutrient use efficiency, 708 

water availability, pruning, pest and disease control, etc. Meanwhile, the overall biophysical 709 

variables responsible for the coffee cupping scores and NIRS were identified and quantified, which 710 

are fundamental to improving coffee quality. Overall, elevation was the key variable driving 711 

biophysical variable influencing all the measured coffee bean quality attributes (hundred bean 712 

mass, total preliminary and specialty quality) at the farm level while canopy cover was the most 713 

important biophysical variable driving the coffee bean quality attributes and NIRS at the shrub 714 

level. Accordingly, canopy cover appeared to be the main controlling variable for the variation in 715 

total preliminary and specialty quality, and hundred bean mass, followed by soil moisture and soil 716 

temperatures. On the other hand, NIRS was confirmed to be a good approach in estimating the 717 

cupping scores. However, the developed NIRS models need to be tested further on data from other 718 

Ethiopian regions to ensure the models' stability and accuracy. 719 
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